Recent progress in oxynitride photocatalysts for visible-light-driven water splitting
نویسندگان
چکیده
Photocatalytic water splitting into hydrogen and oxygen is a method to directly convert light energy into storable chemical energy, and has received considerable attention for use in large-scale solar energy utilization. Particulate semiconductors are generally used as photocatalysts, and semiconductor properties such as bandgap, band positions, and photocarrier mobility can heavily impact photocatalytic performance. The design of active photocatalysts has been performed with the consideration of such semiconductor properties. Photocatalysts have a catalytic aspect in addition to a semiconductor one. The ability to control surface redox reactions in order to efficiently produce targeted reactants is also important for photocatalysts. Over the past few decades, various photocatalysts for water splitting have been developed, and a recent main concern has been the development of visible-light sensitive photocatalysts for water splitting. This review introduces the study of water-splitting photocatalysts, with a focus on recent progress in visible-light induced overall water splitting on oxynitride photocatalysts. Various strategies for designing efficient photocatalysts for water splitting are also discussed herein.
منابع مشابه
Photocatalytic overall water splitting on the perovskite-type transition metal oxynitride CaTaO2N under visible light irradiation.
Overall water splitting was achieved on a simple perovskite oxynitride photocatalyst, CaTaO2N, with an absorption edge at 510 nm. This photocatalyst, modified with a Rh-Cr bimetallic oxide cocatalyst, produced stoichiometric H2 and O2 steadily under UV and visible light irradiation after coating of the photocatalyst particles with amorphous Ti oxyhydroxide.
متن کاملNanocomposite heterojunctions as sunlight-driven photocatalysts for hydrogen production from water splitting.
Hydrogen production via photocatalytic water splitting using sunlight has enormous potential in solving the worldwide energy and environmental crisis. The key challenge in this process is to develop efficient photocatalysts which must satisfy several criteria such as high chemical and photochemical stability, effective charge separation and strong sunlight absorption. The combination of differe...
متن کاملPhotocatalytic Hydrogen Generation from Water using Solar Radiation
Solar photocatalytic water splitting is considered as a potential method for hydrogen production as both solar energy and water are renewable. The major task is the design of suitable photocatalysts, which can work efficiently under solar radiation, especially under visible light. The performance of the visible light active photocatalysts synthesized till date is far from satisfactory for any p...
متن کاملA conjugated porous poly-benzobisthiadiazole network for a visible light-driven photoredox reaction
Photocatalysts, which absorb mainly in the visible range of light, have established notable prominence in applications such as water splitting, solar energy storage, and photovoltaics. Among these visible light-driven catalysts developed, rare metal complexes, especially ruthenium and iridium complexes have found large applications due to their commercial availability, excellent stability and p...
متن کاملEfficient solar water-splitting using a nanocrystalline CoO photocatalyst.
The generation of hydrogen from water using sunlight could potentially form the basis of a clean and renewable source of energy. Various water-splitting methods have been investigated previously, but the use of photocatalysts to split water into stoichiometric amounts of H2 and O2 (overall water splitting) without the use of external bias or sacrificial reagents is of particular interest becaus...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 16 شماره
صفحات -
تاریخ انتشار 2015